Different concentration of Br.G, To.B and Tr.B dyes (2-12 mg/L) was plotted against capacity of [email protected] The R2 values for the sorption of Br.G, To.B and Tr.B dyes [email protected] onto were 0.962, 0.990 and 0.994. Also, the intercept values of these plots were 0.013, 0.019 and 0.011, respectively as shown in table 2. In addition the estimated capacity (Q) of [email protected] for Br.G, To.B and Tr.B were 0.47, 0.30 and 0.19 mmol/g (227, 91.7 and 182.5 mg/g), respectively. The results indicate that the [email protected] has a good sorption capacity compared to other sorbents (Table 1, 2).

The effect of contact time on the removal of Br.G, To.B and Tr.B onto [email protected] was tested by shaking dye solutions at different time (3-60 min). Fig.1AS showed that the time need for complete removal of Br.G, To.B and Tr.B were 60, 60 and 15 min, respectively. It was indicated that at first time the removal was very fast, then slow gradually as the active sites being saturated with time and adsorption process become slower.

The diffusion rates of Br.G, To.B and Tr.B onto [email protected] were estimated using Weber-Morris (4), Bangham (5) and Reichenberg (6) equations.

Q_(t )= K_i ?t (4)

log?log??C?/(C?-Q_(t ) m)? = log??(K? m)/(2.303 V) +? log?t ? (5)

?t=-0.4977-ln??(1-F)? (6)

Where ki (mg/g min1/2) is the intraparticle diffusion rate coefficient, the ?t value is a mathematical function of F = Qt/Qe. Di is the effective diffusion coefficient, and ? and k? are constants. Qe (mg/g) and Qt (mg/g) are the sorption capacity at equilibrium and after time t (min). Particle diffusion mechanism for sorption of Br.G, To.B and Tr.B onto [email protected] was studied with Morrisâ€“Weber model (Weber and Morris, 1963). Plotting Qt vs. t1/2 give straight line did not pass through the origin with Ki=0.74, 0.85 and 0.57 mg/g min1/2, (R2 = 0.53, 0.59, 0.73) as shown in fig.1b. The intercept values (film thickness) were 1.01, 0.71 and 1.03 for the sorption of Br.G, To.B and Tr.B. The intercepted values are due to streaming fluid for sorption of Br.G, To.B and Tr.B dyes onto [email protected] and the higher the value of it, the greater the boundary layer effect (Salem et el., 2016). The deviation of the linear plot consist of two steps (Moawed et el., 2014). The first step, the diffusion rate is high then, decreased with the time pass in the second step. The values of ki(1) , ki(2) of these steps are (2.74 , 0.089 mg g-1 min1/2) for Br.G , (2.65 , 0.032 mg/g min1/2) for To.B and (1.35 , 0.2 mg/g min1/2) for Tr.B. ki(2) decrease as the active centers were blocked by sorbed dye molecules. The first step is a transport step after transfer the adsorbed solution into adsorbent, it is too fast step. The second step is equilibrium step which represents diffusion of adsorbate molecules from the external of the adsorbent into the pores of adsorbent molecules (Tran et el., 2017). Rate of diffusion of To.B > Br.G >Tr.B which mean ki dependent on the molecular size of dyes. The lighter molecule’s weight as To.B will diffuse faster in contract Tr.B which has heavier molecule’s weight. Larger ki, better adsorption mechanism which related to improved bonding between adsorbate molecules with adsorbent particles.